Texture based image indexing and retrieval
نویسندگان
چکیده
The Content Based Image Retrieval (CBIR) has been an active research area. Given a collection of images, it is to retrieve the images based on a query image, which is specified by content. The present method uses a new technique based on wavelet transformations by which a feature vector of size ten, characterizing texture feature of the images is constructed. Our method derives feature vector(10 signatures) for each image characterizing the texture feature of sub image from only three iterations of wavelet transforms. A clustering method ROCK is modified and used to cluster the group of images based on feature vectors of sub images of database by considering the minimum Euclidean distance. This modified ROCK is used to minimize searching process. Our experiments are conducted on a variety of garment images and successful matching results are obtained.
منابع مشابه
Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملتأملاتی بر نمایه سازی تصاویر: یک تصویر ارزشی برابر با هزار واژه
Purpose: This paper presents various image indexing techniques and discusses their advantages and limitations. Methodology: conducting a review of the literature review, it identifies three main image indexing techniques, namely concept-based image indexing, content-based image indexing and folksonomy. It then describes each technique. Findings: Concept-based image indexing is te...
متن کاملHybrid Feature of Tamura Texture Based Image Retrieval System
Storage and retrieval of images in such libraries has become a real demand in industrial, medical, and other applications. Content-based image indexing and retrieval (CBIR) is considered as a solution. In such systems, in the indexing algorithm, some features are extracted from every picture and stored as an index vector. We apply tamura texture features on digital images and compute the low or...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملA Comparing between the impacts of text based indexing and folksonomy on ranking of images search via Google search engine
Background and Aim: The purpose of this study was to compare the impact of text based indexing and folksonomy in image retrieval via Google search engine. Methods: This study used experimental method. The sample is 30 images extracted from the book “Gray anatomy”. The research was carried out in 4 stages; in the first stage, images were uploaded to an “Instagram” account so the images are tagge...
متن کاملContent Based Image Indexing and Retrieval
In this paper, we present the efficient content based image retrieval systems which employ the color, texture and shape information of images to facilitate the retrieval process. For efficient feature extraction, we extract the color, texture and shape feature of images automatically using edge detection which is widely used in signal processing and image compression. For facilitated the speedy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007